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Prediction of Decomposition Temperature for Lanthanide Com-
plexes Involving Cyclopentadienyl and Benzohydroxamic Acid

Ligand by ANNs
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The decomposition temperatures of the lanthanide organic com-
plexes (17-CsHs);Ln( CGH;CONHO) involving cyclopentadienyl
and benzohydroxamic acid ligands were calculated and predict-
ed by the model based on ANNs (artificial neural networks)
method. The comparison was carried out between results from
ANNs method and traditional regression method. It is proved
that ANNs could be used more efficiently for the prediction of

decomposition temperature of lanthanide organic complexes.
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Introduction

Since Wilkinson and Birmingham!*? for the first time
synthesized cyclopentadienyl rare earth compounds with
stable chemical properties in 1954, the synthesis and
preparation of rare earth organometallic compounds have
become an attractive research field. As the potentially
practical material and useful chemical substance such as
available high performance catalyst, some physical prop-
erties of rare earth organometallic compounds should be
concemned. In preparation of rare earth organometallic
compounds, a lot of work has been done in our group and
this work deals with the temperature of decomposition of
these organometallic compounds by means of ANNs (arti-
ficial neural networks) and experiments. In recent years,
ANNs have been used as a useful tool for the prediction of
some properties of compounds, such as the successful
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prediction of enthalpy of fusion of rare earth halides.3"
The advantages of ANNs approach make it easy to deal
with non-linear and more complicated problems. More-
over, the relations applied in ANNs among micro-struc-
tural parameters and the macro-physical properties are not
required in advance, and it is not necessary to give some
prior assumption and to know available information mech-
anismically. The rare earth organometallic compounds
studied here are lanthanide complexes involving cyclopen-
tadienyl and benzohydroxamic acid ligands, i.e., (1-
CsHs ),Ln(CsHsCONHO) . The temperatures of decompo-
sition of seventeen lanthanide complexes were given here
among which seven were measured in this work.

Experimental

The lanthanide complexes were prepared under puri-
fied Ar by using Schlenk techniques.® THF and n-hexane
were refluxed and distilled over the sodium ketyl of ben-
zophenone under Ar before use. The elemental analysis
data for C, H and N were obtained on a Carlo Erba-1106
analyzer. IR spectra were recorded on a Perkin-Elmer 983
(G) spectrometer. MS spectra were obtained on an HP
5989A mass spectrometer. The analysis of Ln was con-
ducted with published method, and tricyclopentadienyl
rare earth compounds and benzohydroxamic acid were pre-
pared by the reported method. 5 Finally the temperatures of
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decomposition for seven complexes were determined care-
fully in sealed argon-filled capillaries. The temperature of
decomposition and the elemental analyses data are listed
in Table 1. Data in parentheses in Table 1 are calculated
according to molecular formula.

Network outline

A three-layered with one hidden layer back-propaga-
tion network was employed in this work. Each neuron in
the input layer is completely interconnected with all neu-
rons in the hidden layer, which are completely intercon-
nected with the neuron in the output layer. Each connec-
tion has a weight associated with it, indicating the con-
nection strength and being modulated by a certain learning
calculus. And the bias was used to act to each neuron in
the hidden and output layers.

To predicate the temperature of decomposition di-
rectly, two sorts of transfer functions were used, which
are hyperbolic tangent sigmoid and lineal functions.

S 2
Yy = b2+.ZW2j -1 (1)

=1 1+ e'2<i_wli;xi+blj)
i=1, 2, m;j=1, 2, -, M

where m is the number of neuron in input layer, M

the number of neuron in hidden layer, w; the weight of
the connection between the ith and jth neurons, w,; the
weight of the connection between the jth neuron in the
hidden layer and the output neuron if there is only one
output neuron, x; the input of the ith input neuron, b;;
the bias of the jth neuron in hidden layer, b, the bias of
the output neuron and y the output. The ANNs of this
work involve only one output neuron. As the lineal func-
tion was used for output calculation, y can be any values
not only within the [ — 1,1] range.

Network training

There have been several methods for training a net-
work. The weights and biases are modulated to the mini-
mum summation of square errors through the continuous
modulation of weights and biases in the steepest degres-
sive direction of summation of square errors in the original
BP learning method. This convergent speed of the original
method is very slow. The momentum is introduced into
learning process to become the modified method. The
modified method uses the momentum to adjust the
weights’ variation from the previous layer. The Leven-
berg-Marquardt method calculates the derivative of errors
against weights and is more speedy and efficient than the
above two methods.”

Table 1 Temperature of decomposition and elemental composition of some complexes

Found (caled, %)

Complex Color m’;f."'?‘:é) Yield (%) - . .
P Yellow 121 32 (;31::(2)) (:cg):ii) (21?0) (gﬁ)
cd Bahyelow 124 40 (332::;(3)) Jligfn (22:1;(1)) (2:2(1))
Dy Yellow 146 % 37.%0) i 18 )
Ho Pele yellow 142 58 (2222) (:::ﬁ) (21(72) (222)
B Pink 155 % (35,58 ) o) .20
Ton White 156 6 <§§I§f> (:2:;) <§23§> (iﬁ)
b Yellow 158 68 (:?;2:;:) (s6.47) 10 o)
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Network; input and output

Since the organic group in this work is the same, the
influence on the physical properties of rare earth
organometallic compounds under study should mainly be
considered from rare earth. The interaction of static elec-
tricity between rare earth element and organic group was
supposed to be negligible. So the radius of rare earth was
selected as the input vector by considering dimensional ef-
fect. Evidently the output in this case is some value relat-
ed to the temperature of decomposition. As the lineal
function is used in the ANNs for the second transfer one,
the temperature of decomposition is read directly. Seven
of rare earth organometallic compounds were synthesized
and the measured temperature of decomposition for each
one was used as target vector for training the network.
Table 2 lists the radius values for input neurons and the
temperatures of decomposition both from the experiments
and the prediction.

Table 2 Radii of rare earth metals and temperatures of decomposi-
tion of rare earth organometallic compounds ( ANNs)

Rare earth Radius Expt. decomp. Caled decomp.
metal (nm) temp. (C) temp. (°C)
Y 0.104 - 145.0
Sc 0.0885 - 190.3
La 0.1172 - 111.2
Ce 0.115 - 112.2
Pr 0.113 121 121.0
Nd 0.1123 - 123.0
Pm 0.111 - 123.9
Sm 0.1098 - 124.0
Eu 0.1087 - 124.0
Gd 0.1078 124 124.0
Tb 0.1063 - 125.4
Dy 0.1052 146 146.0
Ho 0.1041 142 142.0
Er 0.103 155 155.0
Tm 0.102 156 156.1
Yb 0.1008 158 158.0
Lu 0.1001 - 160.1
Network parameters

In the trainings, one sample among seven was left

for testing the model. After several trials the best result
was selected. The parameters of network from training
such as weight matrix compose the predictive model. By
using the network parameters together with Eq. (1) a pro-
gram was made for the prediction of the temperature of de-

composition. The network parameters are listed in Tables
3a—3d.

Prediction and comparison between ANNs and regressions

The leave-one-out method was used when training
the networks. Fig. 1 shows the trend of sum-squared er-
ror on training set. To prove that ANNs are more reliable
especially in this work, several regressive analyses were
carried out, which used full of samples. Some prediction
data from polynomial regressions near to light rare earth
are not shown in Fig. 2 since the data are out of the range
of temperature plotted in Fig. 1. The results of compari-
son for training set from different methods are listed in
Table 4.
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Fig. 1 Trend of sum-squared error on the training set.
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Fig. 2 Temperature of decomposition from measurement and pre-
diction.
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Table 3a  Connection weights between the input and the hidden layer
Wi Wi Wi W Wis Wis Wi Wis

- 89.5520 99.8637 - 98.3037 -171.2458 - 38.4050 248.9223 83.8975 99.9557

Table 3b Biases for the hidden layer
By By, B3 By Bis Bis By By

101.7917 -93.3074 90.6843 179.5069 37.2308 -260.9636 -104.8283 - 87.9604

Table 3c  Connection weights between the hidden layer and output layer
W Wz Wz W Was W Wz W
6.4150 5.8879 - 10.9026 116.9350 32.6086 101.5358 -9.7537 ~7.3262

Table 3d Bias for the output layer
B,
146.3547

Table 4 Comparison of relative error for training set from different methods

Rare earth NNs ( x100) Power 1 ( x 100) Power 2 ( x 100) Power 3 ( x 100) Power 4 ( x 100) Power 5 ( x 100)
Pr 0.00 -4.00 -1.20 -0.06 0.21 0.17
Gd 0.00 8.05 5.38 0.90 0.20 0.26
Dy 0.01 -2.12 -4.07 -3.34 ~2.74 ~2.76
Ho 0.01 3.29 1.98 3.97 4.49 4.39
Er 0.03 -2.94 3.22 -1.26 -1.38 -1.73
Tm 0.01 -1.37 -0.56 0.26 -0.48 ~0.39
Yb 0.01 -0.01 2.40 ~0.13 -0.08 0.22
Conclusion ‘ 1954, 76, 6210.
2 Bimmingham, J. M.; Wilkinson, G. J. Am. Chem. Soc.
The relation between the micro-parameters and 3 ;zns‘:’;i:,sz’ Z.-Y. J. Alloys Compd. 1997, 256,
macro-properties for a substance is always of importance. 9.
ANNs are more efficient for the prediction of the tempera- 4 Sun, Y.-M.; Qiso, Z.-Y. J. Univ. Sci. Technol. Beijing
tures of decomposition of the rare earth organometallics 1999, 6, 24.
than the conventional algorithm since the relation is a 5 Wang, X.-R.; Wan, Y.-B.; Hu, J.-P. J. Rore Earth.
completely nonlinear and complicated. Some more work 2000, 18, 313.
about the temperatures of decomposition of the rare earth 6 E“}‘: Y‘)‘ Lu, H. Chin. J. Org. Chem. 1981, 3, 210 (in
1nese ) .

organometallic compounds with other o ic groups will
Tean pouncs w1 garic. groups 7 Fukuda Toshio, Ghibata Takanori. IEEE Trans. Ind. Elec.

be done in series. 1992, 39, 472.
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